

Modélisation des INformations INteropérables pour les INfrastructures Durables

IfcBridge Prestressing, Suspension and Cable systems

Auteurs / Organismes

Edouard BERTON (CEREMA) Pierre BENNING (Bouygues TP) Pierre-Marie BOUVIER (ALLPLAN) Pierre FONTAINE (CEREMA)

Guillermo RAMIREZ (VSL-Bouygues Construction) Michel RIVES (Vianova Systems France) Claude ROSPARS (UGE)

Relecteur / Organisme

Bertrand CAUVIN (Cerema)

Thème de rattachement : Structuration des données

MINnDs2_GT1.1_ifc-bridge_prestressing_suspension_systems_004_2022_eng LC/21/MINNDS2/061-062-063-064-065 & LC/23/MINNDS2/207 Mai 2023

١.	Abstract2		
	1.1	Abbreviations	3
2.	INTE	RODUCTION	4
	2.1	Issues of the IFC-BRIDGE WGI.I Working Group	4
	2.2	Existing documents	9
	2.3	Standards	9
3.	METHODOLOGY		
	3.1	System Identification	
	3.2	Object Identification	
4.	BRIDGE PRESTRESSING		12
	4.1	Prestressing types	12
	4.2	Object Identification	17
	4.3	System Identification	21
5.	Sus	PENSION AND CABLE STAYED BRIDGES	24
	5.1	Suspension bridges	24
	5.2	Cable-stayed bridge	28
6.	Атт	RIBUTES AND PROPERTIES	33
	6.1	Specific attributes	33
7.	Conclusion		34

I. ABSTRACT

Abstract	 During the first season (2015-2018) of the MINnD research project, the IFC Bridge working group focused on common bridges: slab bridges, girder bridges, rigid frame bridges and culverts. All complex bridge's types such as prestressed, suspension or cable-stayed bridges were out of scope. This deliverable aims to fill this gap by identifying: systems, i.e., set of components responding to a specific function, related to these categories of bridges (prestressed, suspended or cable-stayed); objects composing these systems. Reference documents and the methodology to identify systems and objects are first described. This methodology is then applied to prestressed concrete bridges, then to suspension and cable-stayed bridges.
Résumé	 Lors de la première saison (2015-2018) du projet de recherche MINnD, le groupe de travail dédié aux IFC Bridge s'est concentré sur les ouvrages dits « courants » : ponts-dalles, ponts à poutres, ponts cadres et ponceaux. Les ouvrages complexes comme les ponts en béton précontraint, les ponts suspendus ou haubanés n'ont pas été traités. Ce livrable vise à combler ce manque en identifiant : les systèmes, c'est-à-dire les ensembles de composants répondant à une fonction précise, spécifiques à ces typologies d'ouvrages (précontraints, suspendus ou haubanés) ; les objets qui composent ces systèmes. Dans un premier temps, les documents de référence et la méthodologie de travail sont décrites. La méthodologie est ensuite appliquée aux ouvrages en béton précontraints, puis aux ponts suspendus et haubanés.

I.I Abbreviations

	Abbreviation	Signification
	bSI	buildingSMART International
	IFC	Industry Foundation Class
	HDPE	High Density Polyethylene
	PCI	Precast/Prestressed Concrete Institute
Main key words (Eng) Deliverable key words (Eng)	MINnD; Research; Con: IfcBridge; bridge; prest	struction; Infrastructure; BIM; Digital model; ressing; suspension; cable stayed;
Mots clés principaux (Fra)	MINnD ; Recherche ; Construction ; Infrastructures ; BIM ; Maquette numérique ;	
Mots clés spécifiques au livrable (Fra)	IfcBridge ; ouvrage d'a	rt ; pont ; précontrainte ; câble ; suspension ; hauban ;

2. INTRODUCTION

2.1 Issues of the IFC-BRIDGE WGI.1 Working Group

MINnD SI Continuity

In the first phase of the national MINnD research project, the working group dedicated to IFC Bridges was mainly interested in common bridges: slab bridges, girder bridges, frame bridges, rigid frame bridges and culverts. All complex bridge's types such as prestressed, suspended or cable-stayed bridges were out of scope.

MINnD project and other international initiatives contributed to the IFC-Bridge Fast Track Project led by buildingSMART International that aimed at extending the IFC data model to allow the precise description of the semantics and geometry of bridges: the IFC 4.2 schema specifications.

This present deliverable deals with the classes of objects necessary for the design and construction of non-current structures, i.e., prestressed concrete structures, suspension, or cable-stayed bridges.

Fig. I : Domain extensions covered by IFC 4.3

Since this initial work, which led to the development of IFC 4.2, then to IFC 4.3, some software editors have progressively started implementing these new classes of objects in their authoring tools. The second phase of the national research project must therefore continue its work in order to cover all types of structures, in particular prestressed and cable-stayed structures.

In addition, under the impetus of the development of IFC-Bridge, the other infrastructure domains (tunnel, road, rail, etc.) have mobilized to specify classes of complementary objects to cover all civil-engineering domains. This work in silos has made it possible to quickly mobilize the experts in each field, but now requires work on consistency and verification of the interfaces between the major fields of infrastructure (for example: a road or a railway line sometimes passes over a bridge or in a tunnel). It is therefore essential to identify the scope of study for each area, and to identify the topics that must absolutely be dealt with by the working group dedicated to the IFC Bridge. The goal is to ensure that the subjects essential to the field of bridges, and yet transverse to the other fields, have been correctly treated and correctly consider the particularities of this field.

	In addition, since the development of IFC 4.1 (IFC Alignment) partly implemented by software vendors, some gaps and shortcomings have been identified during the first tests and first uses.
MINnD SI deliverables dealing with IFC- Bridge	 The first phase of the MINnD project took place from March 2014 to March 2016. The Use Case 3 "IFC Bridge" working group studied the state of art of the IFC. The latter is related to the field of the bridge design and construction. It identifies missing concepts and recommends a holistic approach to: Derive IFC definitions. Complete concepts used by users and stakeholders involved in the bridge's lifecycle.
	The second phase of the MINnD project took place from March 2016 to December 2018. The working group goes deeper into the design process. It took the example of a typical bridge:
	• Exhibiting a fair amount of all events and problematic that can be encountered during a bridge project.
	 Considered from the complete lifecycle perspective.
	The following deliverables were the first documents dedicated to IFC-Bridge development recommendations and were delivered to the buildingSMART IFC-Bridge dedicated team.
State of the art	This deliverable aims at providing a state of the art about the applicability of In-
[MINnD UC03 01]	dustry Foundation Classes (IFC) entities to describe the data exchange model sociated to a bridge under construction. The study is based on the knowledg ISO 16739 standard (IFC) and the preparatory works for the IFC-Bridge extens The study has also considered the results of Use Cases, in particular the analy of the IFC files exported according to the ISO 16739 standard, with entities de oped for buildings. As a conclusion, concepts not appropriately addressed h been listed and proposals have been given for developing the missing IFC enti-
Bridge data dictionary from conception to	This document presents the complete method to create a data dictionary (objects and their properties) dedicated to bridges.
bSDD [MINnD UC03 02]	It starts from existing documentation and standards, and go in detail through the methodology, till the transfer to the buildingSMART data dictionary (bSDD).
IDM Bridge design process	This document details the process of a typical bridge. It underlines how the conclusions and works carried out could be affected by other types of bridges.
[MINnD UC03 03]	During this process, the manipulated concepts are identified, and how they could be described within the framework of a theoretical and complete IFC. A final sec- tion defines globally the extensions required and places them into the more global contexts of the IFC extensions under discussion in the infraRoom of build- ingSMART International.
	Finally, the last part details the input data necessary for the design of a bridge whose geometry (architectural model) is strongly related to the computation (an- alytical model). This chapter specifies the mechanical properties related to the ge- ometrical elements to be integrated in the IFC model.
Methodology to feed	This document:
bSDD with a new Data Dictionary	• Presents the method used to add concepts of any domain into the build- ingSMART Data Dictionary (bSDD).

	IfcBridge 2. Introduction
	pior las Mitanistras Doublas
[MINnD UC03 04]	 Shows the work on the data dictionary with the concepts related to the bridge domain added in the bSDD. Aims to be used as a guide to manage a data dictionary by avoiding mistakes and loss of time.
building SMART deliverables	IFC Bridge became an official project in buildingSMART in October 2016 following the MoU supported by the Infrastructure Room. The project was initiated following the IFC alignment work and harmonization opportunity presented by the IFC4 release. The project team also recognized the importance of gaining support from software vendors, addressing missing property sets and the scope for overall extensions. The French organization MINnD was the driving force behind the technical requirements and deliverables in this phase, with 4 objectives:
	I. Provide a description for the extension scope for IFC 4 related to bridges.
	2. Develop a set of specifications for the extension of the IFC 4 conceptual model.
	3. Create a dedicated space in the bSDD for bridge property sets including US specification.
	4. Develop a set of specifications for bridge MVDs for machine readable bridge models.
Project Proposal	Capture the requirements for IFC Bridge project and align to the IFC 4 standard. This project plan was split into two parts and enabled cross-collaboration between different national requirements.
	https://app.box.com/s/3f4kc490jnfc6olo8f7nk3e128377ghd
Requirements Analysis	To analyse the requirements from the different stakeholders and look at the feasi- bility of the proposed project. This report focused on common use cases.
	https://app.box.com/s/5niaey8p2o7vhz6p4qfgpocigx0aggzw
Conceptual Model	The Conceptual Model focused on the necessary data structures for modelling pre- stressing systems (See Fig.2). This report covers the scope, use cases and bridge types that are covered by future extensions of IFC Bridge.
	https://app.box.com/s/w3r53huy4srhfg8t2vr0o12ot93hflsa

I

Fig.2 : The conceptual model included IFC extension requirements that were collected by the project teams.

Candidate Standard	The IFC Bridge Candidate Standard was delivered by the project team. This signif- icant milestone brought together teams across the various projects to deliver this standard. You can read the standard below.
	https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
IFC Bridge Information Exchange	This document contains the specification of the IFC standard. The specification consists of the data schema, in EXPRESS and as an XML Schema specification, and reference data represented as XML.
	http://docs.buildingsmartalliance.org/IFC4x2_Bridge/
IFC Bridge	IFC-Bridge was one of the first identified infrastructure domains in the build- ingSMART roadmap (Fig.3). This link leads to the different release specifications of IFC development.
	https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-re- lease-notes/
IFC 4.1	The main purpose of IFC4.1 is to provide a basis for the various infrastructure do- main extensions currently being developed (e.g., Rail, Road, Tunnel, Ports & Wa- terways). Extensions made to the IFC4 schema include:
	• Description of alignment as a combination of horizontal and vertical alignment
	Linear Placement according to ISO 19148
	• IfcSectionedSolidHorizontal as a new geometry representation particular use- ful for describing infrastructure facilities

IFC 4.2 The main purpose of IFC4.2 is to extend the IFC schema to include the description of bridge constructions. Extensions made to the IFC4.1 schema include:

• The spatial structure was extended by IfcFacility and IfcFacilityPart as a basis to describe the spatial breakdown structure of infrastructure facilities.

l

	 IfcBridge and IfcBridgePart were added to represent bridges and bridge parts. Bridge elements have been integrated into a number of predefined types of building elements. IfcBearing, IfcDeepFoundation, IfcVibrationDamper and IfcTendonConduit were added to represent the respective bridge elements. IfcRelPositions was added to better support positioning along the alignment
IFC 4.3 RCI	The main purpose of IFC4.3 is to extend the IFC schema to cover the description of infra- structure constructions within the domains of Railways, Roads, Ports and Waterways includ- ing the elements that are common across those domains. The IFC4.3 schema has been de- veloped to:
	 enhance the current definition of alignment and linear positioning to include railway cant within its geometric representation and span placements to provide "from-to" po- sitioning;
	 enhance the current geometry definitions for advanced sweeps to add a sweeping operation taking cant into account, and for advanced surfaces to represent road sur- faces;
	 rationalize and enhance the definition of spatial structure to uniformly define a break- down structure for all domains in question;
	 rationalize and enhance the current specialization structure of products and product types to reflect the taxonomy of the new domains Railways, Roads, Ports and Water- ways and common domains such as geotechnics and earthworks.
IEC Novt Gopora	tion (hSI Tochnical roadman, published shortly)

Fig.3 : buildingSMART International IFC-Infra roadmap

2.2 Existing documents

MINnD SI deliverables	 MINnD_UC03_01_IFCBridge_State_of_the_art_002_2015 (December 2015) MINnD_UC03_02_Bridge_DataDictionnary_from_conception_to_bSDD_015A_2018 (November 2018) MINnD_UC03_03_IDM_Bridge_design_process_015B_2019 (February 2019) MINnD_UC03_04_Methodology_to_feed_bSDD_with_a_new_DataDictionary_015C_2018 (November 2018)
Reference documents	 Reference documents of buildingSMART International: IFC-Bridge Fast Track Project / WP1-Requirements analysis – May 2018 IFC-Bridge Fast Track Project / WP2-Conceptual model – October 2018 Other reference documents: "Post-Tensioning Terminology (PTT) Tab3-13"edited by PTI (Post-Tensioning Institute) - November 2013 "Instruction technique pour la surveillance et l'entretien des ouvrages d'art, Fascicule 32, Ponts en béton précontraint", edited by Cerema, 2019 "Conception des ponts à haubans – Un savoir-faire français", edited by Cerema, September 2016 "Instruction technique pour la surveillance et l'entretien des ouvrages d'art, Fascicule 34-1, Ponts suspendus", edited by Cerema, 2021 "Instruction technique pour la surveillance et l'entretien des ouvrages d'art, Fascicule 34-2, Ponts à haubans", edited by Cerema, 2008 Dictionnaire de l'entretien routier - Volume 5 : ouvrages d'art du Cerema ?

2.3 Standards

EN-ISO 23386:2020	EN-ISO 23386 :2020 - Building information modelling and other digital processes used in construction - Methodology to describe, author and maintain properties in interconnected data dictionaries.
	This standard describes a standardisation method of concepts related to products and methods used in construction industry. This document defines and manages attributes related to each concept of a data dictionary.
	It is not a data dictionary! This standard is our reference document to create the bridge data dictionary, and all associated concepts.

Concept attributes	s Each concept of the data dictionary of bridge terms has the following attributes:		
	Attributes	Details	
	Unique identifier	A character related to a single concept, which is con venient to precisely identify it (also called GUID - Global Unique IDentifier).	
	English name		
	Description in English		
	French name	Or another language	
	Description in French		
	Visual representation		
	Creation date		
	Country where the con- cept is used		
	Nature of the group	Domain, class, or group of concepts, depending on the hierarchy level of the concept	
	Group of concepts	Group's name in which the concept is. For a concept at the bottom of the hierarchy level	
	Relationship between groups	Group's name in which the concept is (parent) and the names of groups included in it (child), for a concept which is not at the bottom of the hierarchy level	
	Туре	Kind of value. Integer, real or character	
	Cardinality	Number of values to describe the concept	
		For example: three values are required for coordinates	
	Physical values	Length, speed, etc.	
	Unit		
	Threshold values		

3. METHODOLOGY

3.1 System Identification

Systems	A system is a set of elements or components interacting with others, according to certain principles or rules.
	Each system responds to a function.
	A function responds to a requirement with an expected performance.
Objectives	The exhaustive identification of the systems makes it possible to check that the functions are treated in their context, because we have to consider the components of the system, but also the interactions with the external systems on which they depend or with which they have interfaces.
Stakes	In our study, the stakes are mainly to attach some properties to a complete system (such as performance attributes) and not to each object that composes it.
Links between systems	The links between systems also make it possible to propagate some properties by inheritance, that means some child attributes are the same as the parent attributes which govern them.

3.2 Object Identification

Exhaustive list of objects	Each system is therefore composed of objects, the list of which may vary depend- ing on the type of project or the use of the system to meet a given function.
	Our goal is therefore to identify the exhaustive list of objects that make up a sys- tem, in all possible configurations, whether common or not.
Bridge Prestressing case	As part of our study on prestressing, we must consider:
study	The prestressing components.
	• The geometry of the prestressing in its context.
	• The implementation of prestressing.
Suspension and cable- stayed bridges case	As part of our study on suspension bridges and cable-stayed bridges, we must consider:
study	The suspension components.
	• The suspended or wired structure, whether concrete or steel structure.
	 The implementation of tendons and hangers.

4. BRIDGE PRESTRESSING

4.1 Prestressing types

Prestressing definition	Prestressing is a construction technique for cement concrete structures which con- sists in creating favourable internal forces. These are carefully adjusted to reduce the effects of weak concrete in tension. Prestressing is mostly carried out using tension cables coated with concrete.
Pre-tensioning	In this case, steel wires are stretched between two benches. They pass through a form- work where fresh concrete is poured and set. After hardening, the threads are cut. At that time, the steels transfer part of their tension in the form of compression of the concrete: the compression of the concrete balances the tension in the steels. The wire / concrete contact exists all along the wire. The layout of the wires is most often straight.
	The pre-tensioning is implemented in specialized workshops equipped with ten- sioning benches. It applies to the prefabrication of light fixtures, floor slabs and short bridge beams.
Post-tensioning	In this second case, the fresh concrete is poured into the formwork and sets. Wires (or cables) are then threaded into sheaths left waiting in the concrete. These wires are then tensioned using jacks and wedges. During the tensioning process, the wires transfer part of their tension in the form of compression of the concrete: the compression of the concrete balances the tension in the steels. The layout of the ducts is not necessarily straight; they can be curved so as to inject forces into carefully chosen areas.
	Post-tensioning applies to larger structures such as bridges, but also tanks or nu- clear power plants. This is the reason why this technique will be mainly treated in the following chapters.

Fig.4: post-tensioned prestressing principle

Post-tensioned prestressing types

Here are the main characteristics of the different post-tensioned prestressing types:

Prestressing type	Characteristics	Comments
Internal prestressing (simply sup- ported beam)	 Injected Unremovable (in service) Horizontal or Vertical (pylon) 	 Removable if wax is used

Prestressing type	Characteristics	Comments
	Longitudinal	• Beam, continuity
	Transversal	•
	Injected	•
External prestressing (continuous	Removable	•
beam)	 Longitudinal 	•
	Transversal	•
Nulling	Not injected	•
Naming	Removable	• Temporary
Launching prestressing	Incremental	Temporary
Anchored wall	• Tendons or Thread bars	•

Simply Supported Beam

Free Cantilever Construction

Fig.5 : Prestressing types

Prestressing systems	As proposed in the above methodology, the first stage is to identify the different systems for the prestressing of a bridge (see Fig.6 below).
Structure	The first system is the bridge itself (the concrete structure in which the prestressing elements will be installed), and mainly the "deviation zones".
Definitive systems (Tendon system)	In the "linear zone" of the concrete structure, the main systems concern the pre- stressing elements:
	 Duct system (for post-tensioned prestressing only)
	Main tensile element system
	The "anchorage zone" is at the end of each tendon:

	• Anchorage system Remark: specific elements to external prestressing (s cables) are classified in the structure system (Concret	uch as deflectors for external e and Rebar).
Implementation system / Equipment	 Then, the necessary systems for prestressing implem Threading system Tensioning and monitoring systems Grouting system Other systems (Accessories, Tools) 	entation are:
Interfaces between systems	All these systems have interaction between each othe cific components. These interactions are shown on the	er, by the means of some spe- ne Fig.6 below.
	Structure (Concrete & Rebar)	&
· · · ·	Tendon sy	stem
Duct System	Anchorage System	Main tensile element System
Grouting System	 Temporary system Tendon system Structure Linear zone Anchorage zone Deviation zone 	Threading System
	Fig.6 : Prestressing systems	
Prestressing implemented components	For each definitive system, the components are the f	ollowing ones:
Duct system	The ducts left waiting inside the concrete (internal p formwork, generally fixed to the reinforcements. The be inserted can be made using a sheath (metal strip, (HDPE, steel).	restressing) are placed in the ducts in which the cables will corrugated plastic) or a tube
	The ducts for temporary cables are not injected. Their	r role is to:
	facilitate the installation of cables,protect them against possible mechanical attack	s.
Main tensile element system	Prestressing cables can be of several types:	

Fig.7 : Definitive prestressing objects

Prestressing Implementation components	Then the necessary components for prestressing implementation are the following ones:
Threading system	 In accordance with the tendon type and geometry, the method has to be adapted: Some examples of implementation of main tensile elements: threading by unitary pushing of the strands into the conduits (most cases) towing in the case of strands that are difficult to thread or when difficulties are foreseeable (length, undulation, etc.). Protected sheathed strands: pulling of the strand, the reeling of the protected sheathed strand is carried out by the rotation of the reel mounted on an axis. Threading is generally manual or by pushing with a threader equipped with rubber rollers.

Tensioning & Monitoring system	The tensioning is carried out by means of a jack and its hydraulic pump, by suc- cessive pressure stages. The process is managed with pressure gauges and sensors. It can only be authorized when the structural concrete has sufficient resistance.
	At each stage of tensioning, a keying operation allows the cables to be blocked.
Grouting system	The tensile elements must be permanently protected against corrosion in order to ensure the durability of the prestressing from the temporary protection to the final protection. The injection of conduits and anchors is intended to fill the voids in the conduits, to protect the strands against corrosive agents and to passivate the steel used.
	<u>Comment</u> : Only cement grout passivates the steel. Not wax, not grease which allows to replace the main tensile elements if necessary.
Other systems	Lots of accessories and tools are needed to carry out the different tasks: Marking Duct assembly / welding Ducts and Casting installation Anti-bursting reinforcement installation Bar chairs installation Inspection Free Passing Test Concrete witnessing Equipment mobilisation Strand threading Strand cutting Strands bulging Compression fittings installation Anchorage installation Strand Stressing De-tensioning works Grouting preparation Pressure tightness test Grouting works Chipping works Chipping works Concrete patching
	-
Prestressing External Objects (Structure and Tensioning systems)	Then, the necessary components to set prestressing in the concrete, or to stress tendons are the following ones:
Deflector	A deflector is a structural element, typically made out of concrete, capable of ab- sorbing the forces exerted by the external cable in the deflection zone, and which

ensures the geometry of the deflection. It can be reinforced with a curved steel duct or with a suitably shaped steel shell (diabolo).

End block

k Device for anchoring a prestressing cable at an end or an intermediate point of a concrete structure.

Fig.8 : Typical elevation of an external multistrand post-tensioning

4.2 Object Identification

Exhaustive list of objects	 Exhaustive identification of the objects necessary for: The prestressing: cables, anchors, ducts, etc. The geometry of the prestressing: deviator, block, etc. The implementation of prestressing: threading, tensioning jacks, etc.
Links between objects	The dependencies between objects are necessary to define interfaces between concepts (exhaustivity and scope).
Spacer bar Local a zone rei Duct + Sleeve Grout Vent Grout Sleeveco	nchorage- nforcement Trumpet Bearing Plate Grout Inlet Upler Anchorage body Tendon Wedge Monostrand Multistrand Shuttle

Fig.9 : Main objects of a Prestressing System with their dependencies

List of components	Here is the list of the main components of a prestressing system.
Prestressing component / Object	Definition
Anchorage	Mechanical device, usually comprising several components, designed to retain the force in the stressed tendon, and to transmit the force to the structure.
	Protection cap Bearing plate Protection tube Compound seating Dijection pipe Gatvanized greased and coated strand Nut Anchorplate MTRN Type Anti-corrosive compound

Fig.10 : Post-tensioning Anchorage

Anchor head (Wedge plate)	Part that holds one or several tensile elements by wedges/button heads/ nuts and transfers the prestressing load to the bearing plate, or for small tendon sizes directly into the structure. The anchor head is sometimes called a wedge plate.
Anchorage cap	Cap made of steel or plastic to encapsulate the end of the tensile elements at the anchorage.
Bearing plate	Part that supports the anchor head and transfers the prestressing load onto or into the structure. The bearing plate is sometimes called a "force transfer unit".
Bursting reinforcement	Reinforcement in the local anchorage zone, just adjacent to the anchorage, to confine the concrete, and to resist transverse tensile loads due to the introduction of the pre- stressing load.
Button head	Part that holds an individual tensile element, typically a wire, and transfers the pre- stressing force to the anchor head, or for an individual tensile element directly to the bearing plate.
Coil	Delivery unit of strands, monostrands or wires, generally made of a cylindrical shape.
Compression fitting	A cylindrical steel component that is extruded/cold over the tensile element such as to provide a tight fit with the tensile element allowing to anchor the tensile element force.

Connector	Special element to join individual duct lengths/sections between each other or to join a duct segment to the anchorage or trumpet.
Coupling / coupler	A device to join adjacent sections of tendons
Dead end anchorage	A "passive" end anchorage of a prestressing tendon that does not have any jacking operations undertaken at that end.
Deviator	A structural element where external tendons are deflected, and tendon forces are transmitted to the structure.
Duct	An enclosure in which tensile elements are placed and that temporarily or perma- nently allows relative movement between the tensile elements and the surrounding concrete. The remaining void within the duct can subsequently be filled with filling material.
Duct coupler or joiner	A component that securely connects separate segments of post tensioning ducting, commonly used when joining precast concrete segments in a prestressed structure.
Duct support	Device that supports and firmly holds a duct in position.
Filling Material	A material used to completely fill the space around the tensile elements inside a duct to provide corrosion protection and/or bond. A cementitious filling material is also called "grout".
Fixed anchorage	Anchorage that does not allow stressing, or anchorage formed by bond between ten- sile elements and concrete.
Fixed coupling	Coupling that allows joining of adjacent tendon sections stressed not at the same time
Grout	Cementitious filling material
Grout inlet (or Grout tube)	Tubular components connected to anchors or ducting through which grout is pumped during the process of grouting
Grout outlet (or Grout vent)	Tubular components or hose connected to anchors or ducting that permits air and water to escape the duct at high points and ends of the tendon profile during the process of grouting
Intermediate anchorage	Can be used when structures are built in steps. The intermediate anchorage anchors temporarily one strand in a first section before the second section is built and the whole strand is stressed from the other end of the second section. After stressing the whole strand from the second section, the anchorage remains in the structure without taking any forces. The anchorage can be used for internal bonded or internal unbonded tendons
Jack	A device that tensions prestressed concrete tendons.
Mono-strand	A prestressing system using tendons with single strands, or tendons able to be ten- sioned using a mono-strand jack
Multi-strand	A prestressing system using tendons with multiple strands, and are tensioned using a multi-strand jack
Movable coupling	Coupling that allows joining of adjacent tendon sections stressed at the same time
Nut	Piece that holds an individual tensile element, typically a bar, and transfers the pre- stressing force to the anchor head, or for an individual tensile element directly to the bearing plate. Nuts can also be components of anchorages or couplers

Pipe	A thick-walled smooth duct made of plastic or steel
Protection cap	Anchorage cap to protect the dead-end strands, injected with anti-corrosive com- pound
Sheathing	An enclosure encapsulating a single tensile element, usually separated by a thin layer of grease or wax from the tensile element. Typically, monostrands are equipped with polymer sheathing.
Shuttle	A specific temporary device set up at the end of a strand, used to facilitate pushing of strands in duct
Sleeve	Sheath joining duct and anchorage trumpet
Spacer bar	Specific bars or chairs to set up ducts in the concrete reinforcement system
Strand	Twisted steel cable composed of 2, 3, 7 or 19 high strength steel wires. Strands are galvanized, greased, and coated.

Fig.11 Different strand types (made of 3 or 7 steel wires)

Stressing anchorage	Anchorage allowing stressing of the tendon, usually a mechanical anchorage.
Tendon	A single tensile element or a bundle of tensile elements used for the prestressing of a structure, including the required protection and anchorages
Tendon tail	Protruding length of tendon, used for tendon tensioning implementation. This extra length is usually cut off after implementation, but is sometimes let in place in case of force adjustment or maintenance
Tensile element	Individual element such as strand, wire, or bar to impart prestressing
Trumpet	Device used to join bearing plate to duct providing the necessary leak tightness and allowing a reduction of the bundle diameter in the case of multi tensile elements an- chorage
Trumplate	Steel part combining the functions of a trumpet and an anchor plate for prestressing reinforcement
Wedge	Part that holds and individual tensile element, typically a strand, and transfers the prestressing force to the anchor head, or, typically for a single tensile ele- ment but also feasible for several tensile elements, directly to the bearing plate
Wire	A flexible thread of steel used to bear mechanical loads

4.3 System Identification

components per	A complete list of prestressing components is detailed below, with the expected properties ¹ .
Implemented	We can find hereafter the exhaustive list of implemented components:
components	Tensile elements (Fig.13)
	• Duct (Fig.13)

- Anchorage (Fig.14)
- Deviation (Fig.14)
- Dampers.

Comment the completeness of the items in the list has been verified by:

- prestressing experts,
- comparison with catalogues of components offered by suppliers of prestressing equipment,
- research in specialized technical dictionaries.

system

¹ This Excel list is also available in deliverable: MINnDs2_GT1.1_ifc-bridge_taxonomy_prestressing_suspension_systems_005_2022.xlsx

Main system	Main System Properties	System	System Properties	Sub-system	Sub-System properties	Component / Object	Object Properties
Implemented	Bonded tendon	Linear Zone		Prestressing steel		Strand Coil	Diameter
components		(Tensile element)	ment)				Coiling sense (left/right)
	Unbonded tendon					Stress bar	
						Wire	Ultimate strenght
	Longitudonal tendon					Strand	Number of wires
	Transversal tendon					Tendon tail	Length
						Tendon	Monostrand
							Multistrand (Number of strands)
							Date of birth (implementation date)
	Vertical tendon			Tendon Encapsulation		Sheathing	PEHD
						Wax	
	Internal tendon					Grease	
	External tendon			Continuity anchorage		Bar coupler	
	Hybrid tendon					Compression fittings	
	Exchangeable tendon (Y/N)					Movable Coupler block	
	Protection level:					Sleeve (= coupler casing)	
	Protection level 1 (PL1)				Trumpet		
	Protection level 2 (PL2)					Wedges	
	Protection level 3 (PL3)		Tendon support system	Chairs			
						Others	
				Local zone reinforcement	ment V	Back-up bars	
				(only with continuity		Bursting steel	
				anchorages)		Confinement reinforcement	
		Linear Zone (Duct)	uct)	Ducting system	rcting system	Corrugated Duct	Metal Protection level PL1
							PEHD ou PP: Protection Level PL2 PL3
						Duct coupler (duct connector or joiner)	Venting point (Yes / No)
						Duct support	coordinates x, y, z
							height
					Duct inlet	coordinate z	
						Duct Outlet (= vent)	coordinate z
						Segmental coupler	
						Smooth pipe	
						Electrofusion socket	
						Sensor	Acoustic sensor
							Accelerometer
							Void sensor
				Duct Filling material		Grout	
						Wax	
						Grease	
						Gel	

Fig. 13 : Prestressing - Implemented components of linear zone

Main system	Main System Properties	System	System Properties	Sub-system	Sub-System properties	Component / Object	Object Properties
Implemented		Anchorage zone		Anchorage (assembly)	Fixed anchorage	Anchor	
components					Dead end anchorage		
						Anchor nut	
						Anchor, barrel	
						Bearing plate	Basic or Special
							Number of strands
							Bolts for cap (Yes/No)
							Inspection port (Yes/No)
							Concrete strength
						Bond length (in a passive anchorage)	
						Bulb (in a passive anchorage)	
			Anchorage zone volume			Button head	
			dimension x			Strand deviation soft interface	Bushing
							Deviation plate
			dimension y			Deviation plate (DSI)	
			dimension z			Electrical connection	
						Fixed Coupler block	
						Insulation plate	
						Lock nut	
						Pocket former (=recess former, stressing pan)	x,y,z
						Protection cap	Temporary/ Permanent
							Material
						Retaining plate	
						Sensor	
						Shims	
						Tension ring	
						Troubleshooting anchor	
						Trumpet	Yes/No
						Material	
						Trumplate	
			W	Wedge			
							Type of strand 13/15,2/15,7mm
							Number of segments (2/3)
					vcal zone reinforcement E		Clip/ No clip
						Wedge plate (Anchor head)	
							Number of holes
							Type of strand (0,5, 0,6, other)
				Local zone reinforcement (end block)		Back-up bars	
						Bursting steel	Bar diameter
						-	Grade of steel 400/500/670
						Confinement reinforcement	Bar diameter
							Grade of steel 400/500/670
							Helix/Stirrups
							Pitch/Spacing
		Deviation zone		Deviator		Deviator tube	-
						Diabolo	
						Matrix deviator	
				Nailing reinforcement		Reinforcement	

Fig.14 : Prestressing - Implemented components of Anchorage and deviation zones

Implementation

- We can find hereafter a non-exhaustive list of implementation components (Fig.15):
- components

Threading system Tensioning system

- Grouting system
- Installation and monitoring system
- Accessories and tools

Main system	Main System	System	System Properties	Sub-system	Sub-System	Component / Object	Object Properties
Implementation		Threading		Strand pusher			Hudraulio
components -		system					Electric
Equipment				Uncoiler			Horizontal
							Vertical
				Dispenser / Strand drum			
				Hydraulic pump			
				Winch			Electric
		-					Other
				Hand tools and accesories		Shuttle (Push-through caps)	Steel
		-				Otur	Flashc
		-				Dive Dive	
		-				Pushtabes Cuiding lagges	
		-				Budang noses	
						Cable cook	
						Velded stimup	
		Tensioning		Hudraulic jack		incluce skinep	Single strand last
		sustem		riyaraano jaok			Multistrandiask
		3 3 510m					Hallow iark (for bars)
							Jacking force
				Hydraulic pump			
				Accessories		Guide forks / Strand Combs	
		1				Guide caps	
		1				Wedge seating tool	
		1				Fork / Spacer fork	
						Hydraulic cutter	
				Chairs		Stressing chair	
		1		1		Destressing chair	
						Jack chair	
						Curved chair	
		Grouting system	For cement grout For wavisolt fillers	Grouting station		Grout mixer	Drum Colloidal
		1 1		1		Agitation tank	
		1		1		Grout pump	
				Peristaltic pump			
				Waxpump			
				Vaccum pump			
				Heating tank			
		Installation		Filling sensor			
		monitoring		Force transducer / Load cell			
		system		Pressure gauge			
				Elongation			
		-		Displacement			
		-		Density			
				Insulation / Electrical			
		-		resistance Wheeler LAsselses at a			
				vibration Acceleronieter			
		Accessories		Gauges			
				Hoses			
				Uners			
				winteries Swand Counter			
		-		Duand Coupler			
		Tools		nower Cables Mirror Welding Machine			
		10015		Internal debeader			
		1		Bunding Tool			
		1		Collars			
		1		Strand Prenaration Beach			
	I	I	I	los ano rieparadori bench	I	I I	

Fig.15 : Prestressing - Implemented components - Equipment

Conclusion

Post-tensioning strand systems are far more complex than the elements developed in IFC4.3 may offer. They constitute sub-systems of the bridge system itself and it justifies introducing an **IfcSystem** to cover post-tensioning (and possibly other systems essential to the operation of the bridge such as the monitoring system, the lighting system etc.). Currently, without IFC classes dedicated to prestressing, post-tensioning systems designers call for elements that are often used in plumbing, piping, and electrical networks, but special entities are needed to cover all the prestressing scope, including deviators as well as an-choring points. For bridges constructed by segments, it is usual to plan internal (segment and creeping cables) and external cables (continuity). In the case of ducts, **IfcDuct** must allow being threaded in by an **IfcCable** or **IfcStrand** and its remaining void (the internal volume of the duct less the external volume of the cable) being later filled-in by an **IfcGrout**.

Perspectives The prestressing objects described for structures are similar to those used for other prestressed structures (nuclear power plants, LNG tanks, gravity base of offshore wind turbines, etc.). Specific additional objects may therefore be required, but the main IFC classes have been described in this chapter.

5. SUSPENSION AND CABLE STAYED BRIDGES

5.1 Suspension bridges

Suspension bridge	Suspended bridge specificities are mainly the suspension cables and the hangers connected to the suspended structure and the deck. The suspension system is very flexible, and its shape is sensitive to the loads applied on the deck, the external temperature, and the construction sequencing. The reference of the geometric representation is the bridge with applied dead loads at the end of the construction. The detailed definition of this geometry is driven by the structural analysis of the construction steps. Specific parts are necessary to describe the components ensuring the connections between the deck and the hangers, between the hangers and the suspension cable, between the suspension cable and the saddle on the top of the pylon, between the suspension cable and the anchorages.
-------------------	--

Suspension systems	As proposed in the previous methodology, the first stage is to identify the different systems for the suspension of a suspension bridge (see Fig.16 below).
Suspended Structure	 The first system is the bridge itself, <i>i.e.</i> the suspended structure: The supporting system: deck, girders; The load bearing system: pylon, saddles, and anchorages; The foundation system (foundation under anchor block and under pylons). The girder (rigidity beam) ensures aerodynamic stability and limits the local angle changes in the deck.
Suspension systems	 The main systems deal with the suspension elements: Main suspension cable system; Hangers' system. And the different fastener systems, binding systems together.
Implementation system / Equipment	 The necessary system for cable implementation and tensioning: Lifting and guidance systems (saddles, splay saddle, splay collar); Tensioning and monitoring systems; Other systems (Accessories, Tools).
Interfaces between systems	All these systems interact with each other, through some specific components. These interactions are shown on Fig.16.

IfcBridge 5. Suspension and cable stayed bridges

Fig. 16 : Suspension bridge systems

Suspension bridge implemented components

I

For each definitive system, the components are the following ones (Fig.17):

	IfcBridge
	5. Suspension and cable stayed bridges
Main suspension cable	The different types of cable are:
and hanger systems	• Main suspension cable (MSC): the main cable, binding the pylons with the foundation blocks, supporting all hangers.
	• Hanger (or suspender): cable binding the main suspension cable with the suspended structure, by means of anchorages and clamps.
	 Cables-stays, involved in some specific hybrid configurations. Any other cable systems, such as horizontal cables between pylon heads to
	prevent large displacements of moving saddles.
	Vandal proof and explosion proof equipment.
Fastener systems	The different fastener systems, depending on their functions:
	 Saddle and deviation system (mobile or stationary device on the pyion head). Lower and upper banders' tie
	 Anchorage block system: linked to the foundation blocks, or directly to pylons
	for more specific configurations.
Py Mo	ylon head Pylon head
Foundation block	Fig. 17 : Example of suspension bridge
	Fig.17 : Example of suspension bridge
Prestressing Implementation components	The necessary components for cable-stayed implementation for suspension bridges are the following ones (Fig.18):
Lifting and guidance	To help lifting and guiding the main tendons, several devices are used:
system	Catwalk: temporary cables with rollers to guide tendons implementation.Winch: device to lift tendons following the catwalk.
Tensioning &	The tensioning is carried out by means of a jack and its hydraulic pump. The pro-
Monitoring system	cess is managed with pressure gauges and sensors.
Other systems	 Saddle installation
	Anchorage installation

• Strand pre-cutting

- Strand threading
- Strand by strand stressing
- Strand by strand re-stressing
- Equalization
- Vibration testing
- Casing installation
- Catwalk installation
- Stay pipe closure
- Protection cap installation
- Anchorage injection
- Monitoring system installation
- Fire Protection installation
- Anchorage final inspection
- Bearings (strut, slides, wind block)
- Pendant bracket, pushcart
- Cable dehumidification system

Fig.18 : Example of a suspension bridge implementation

List of components per system	A complete list of suspension bridge components is detailed below ² .
Implemented components	We can find hereafter the exhaustive list of implemented components:Anchorage Zone

- Transition Zone (Connectors)
- Free Length (Cables)

 $^{^2 \} This \ Excel \ list \ is \ also \ available \ in \ deliverable: \ MINnDs2_GT1.1_ifc-bridge_taxonomy_prestressing_suspension_systems_005_2022.xlsx$

Implementation components

We can find hereafter a non-exhaustive list of implementation components:Cable installation system

Main system	System	Sub-system	Component / Object	Detail / Properties
Implemented components	Anchorage zone	Fixed anchorage (anchorage	Bearing plate	It can also be a steel structure with multiple plates and including the Guide pipe
		block)	Guide pipe	
			Steel superstructure	
			Anchor head	
			Wedge	For strand tendons
			Anchorage nut	For bar tendons
			Protection cap	
				Required to accomodate construction tolerances when cutting the strands.
			Transition pipe	Depending on the system, it may or may not be present
			Sealing system	
			Soft filler	Wax, grease, gel or other polhymers
			Gusset plate	
			Fork/Clevis	
			Pin	
		Saddle system	Saddle	
			Sealing system	
			Roller	
	Transition zone	Connectors	Yoke	
			Socketed end fitting	
			Fastener	
			Grip ring	
			Tensioner	
		Damper	Rubber damper	
			Friction damper	
	Free length	Main tensile element	Load bearing stay (primary cable)	
			Stabilising stay (damping cable)	
			Rear stay	
			Wire	
		Pipe	Stay pipe	
		Hanger	Wrought iron hanger	
			Strand hanger	
			Steel rod hanger	
		Deck protection	Antivandalistic pipe	
		Fire protection system		
		Blast protection system		
Implementation components - Equipment	Strand implementation	Walkway		
		Winch		
		Gantry		
		Pulley		

Fig.19 : Suspension system - Implemented and implementation components

5.2 Cable-stayed bridge

Cable-stayed bridge	Cable-stayed bridge specificities are mainly the stay cables. Stay cables are ele- ments of the structural analysis model. Their geometric representation is depend- ing on the tension faced by the stay cables.			
Cable systems	As proposed in the previous methodology, the first stage is to identify the different systems for the cabling of a cable-stayed bridge (see Fig.20 below).			
Structure	 systems for the cabling of a cable-stayed bridge (see Fig.20 below). The first system is the bridge itself, the cabled structure: The supporting system (deck): girder ("rigidity beam"); bridge floor (stringer, transverse girder); reinforced concrete slab. The load bearing system (pylon): pylon; saddle; anchorages. 			
Definitive systems	The main systems concern the strand elements:Tendon system.			

Cable stayed bridge implemented components	For each definitive system, the components are the following ones (Fig.21):
Tendon system	The collection of cables:
	• Tendon or strands, binding the pylons with the deck, by means of anchorages.
	 Stay pipe, the sheath of the different wires setting up each tendon.
	 Fire protection, vandal proof and explosion proof equipment.
Damper system	To absorb vibrations and avoid resonance, the devices are:
	 Dampers; binding tendons with the deck.
	 Cross ties: binding tendons together to avoid chocks in case of wide oscilla- tions.
Anchorage systems	And the different fastener systems, depending on the cable-stayed bridge type:

- Lower anchorage system (linked to the deck).
- For a harp cable-stayed bridge (parallel attachment pattern see Fig.21): upper anchorages or "link" set up in the pylon head.
- For a fan cable-stayed bridge (radial attachment pattern see Fig.21): stationary saddle put above the pylon head.

Fig.21	:	Cable-stayed	bridge
--------	---	--------------	--------

Cable Implementation components	Then the necessary components for cable-stayed implementation are (Fig.21):			
Lifting and guidance system	To help lifting and guiding the strands (one by one), several temporary devices are used:			
	• Supporting strand: temporary cable between the deck and the pylon head, with a cable tray (guide pipe) to guide tendons implementation;			
	• Winch: device, put on the pylon head, to lift tendons following the supporting strand.			
Tensioning & Monitoring system	The tensioning is carried out by means of a jack and its hydraulic pump. The pro- cess is managed with pressure gauges and sensors.			
Other systems	Lots of accessories and tools are needed to carry out the different tasks:			
	Guide pipe Installation			
	Saddle Installation			
	Link Installation			
	Anchorage Installation			
	First Strand pre-cutting			
	Stay Pipe Handling			
	Stay Pipe Lifting & Installation			
	Strand pre-cutting			
	Strand threading			

	IfcBridge 5. Suspension and cable stayed bridges
	Addituise de Normatine Norgeledes por la Niteracione Dordée
	Strand by strand Stressing
	Strand by strand Re-stressing
	Equalization
	Multistrand stressing
	Lift-off
	Vibration testing
	Damper installation
	Damping Testing operation
	Casing Installation
	Guide deviator installation
	Tension Ring installation
	Dummy strands installation
	Stay pipe closure
	Protection cap Installation
	Anchorage Injection
	Cross tie Installation
	Monitoring system Installation
	Fire Protection Installation
	Anchorage final Inspection
	Damper final inspection
List of components per system	A complete list of suspension bridge components is detailed below ³ .
Implemented	We can find hereafter the exhaustive list of implemented components:
components	Anchorage Zone
	Transition Zone (Connectors)

Free Length (Cables)

Implementation We can find hereafter a non-exhaustive list of implementation components: components

Cable installation system

³ This Excel list is also available in deliverable: MINnDs2_GT1.1_ifc-bridge_taxonomy_prestressing_suspension_systems_005_2022.xlsx

IfcBridge 5. Suspension and cable stayed bridges

Main system	System	Sub-system	Component / Object	Detail / Properties
Implemented components	Anchorage zone	Fixed anchorage	Bearing plate	It can also be a steel structure with multiple plates and including the Guide pipe
		(It can be installed both on the	Guide pipe	
		pylon and on the deck)	Steel superstructure	
			Anchor head	
			Wedge	For strand tendons
			Anchorage nut	For bar tendons
			Protection cap	
				Required to accomodate construction tolerances when cutting the strands.
			Transition pipe	Depending on the system, it may or may not be present
			Sealing system	
			Soft filler	Wax, grease, gel or other polhymers
			Gusset plate	
			Fork/Clevis	
			Pin	
		Adjustable anchorage	Bearing plate	It can also be a steel structure with multiple plates and including the Guide pipe
		(It can be installed both on the	Guide pipe	
		pylon and on the deck)	Steel superstructure	
			Anchor head	
			Wedge	For strand tendons
			Anchorage nut	For bar tendons
			Protection cap	
			Ring nut	
			Threaded pipe	
				Required to accomodate construction tolerances when cutting the strands.
			Transition pipe	Depending on the system, it may or may not be present
			Sealing system	
			Soft filler	Wax, grease, gel or other polhymers
			Gusset plate	
			Fork/Clevis	
			Pin	
		Saddle system	Saddle	
	-		Sealing system	
	Transition zone	Compacting device Damper	Tension ring/ Compaction clai	Free floating compacting device
			Guide deviator	Compacting device enclosed by the guide pipe
			Rubber damper	
			Friction damper	
			viscous damper	
		Connectors	Pylon connection	HUPE pipe, slightly larger in diameter than the main HUPE pipe. It can be released
	Free length	Main tensile element	Desk connection	from the pylon, and lowered to create a working window on the pylon.
			Strand (stav)	radiating stays, fan stays, harn stays
			Wire Stay	reureung stays, ren stays, nerp stays
			Bar	
			Bar coupler	
			Stavinine	
		Damper	Cross tie	
		Deck protection	Antivandalistic pipe	
		Fire protection system	in a construction of the	
		Blast protection system		
Implementation components - Equipment	Strand implementation	Walkway		
		Winch		
		Gantry		
	1	Pulley		
	1			

Fig.22 : Cable-stayed - Implemented and implementation components

6. ATTRIBUTES AND PROPERTIES

6.1 Specific attributes

Attributes Some additional attributes must be considered in the IFC classes, in particular the properties of the components (in particular, the tendons).

Considered system	Attributes	Definition
	Elongation	A change in the form or shape of a ten- don which is subjected to stress
	Eccentricity	The distance of the geometric centre of the tendon from the axis of the duct
	Effective prestress	The stress remaining in concrete due to prestressing after loss of prestress
	Friction loss	The stress loss in a prestressing tendon resulting from friction between the ten- don and other devices during stressing
	Ultimate strength	The highest load that a piece can sus- tain before failing

Fig.23 : Eccentricity

I

7. CONCLUSION

Concluding remarks	As the first season of MINnD focused on common bridges, this deliverable aimed to identify systems and objects specific to more complex structures, such as prestressed concrete, suspended and cable-stayed bridges.
Prestressing	 Regarding prestressed concrete bridges, four main systems have been identified: the main structure itself (concrete and rebars); the tendon system, that can be decomposed in a duct system, an anchorage system, and the tensile system; the implementation/monitoring system; the threading and grouting system. For every system, an exhaustive list of objects has been compiled.
Suspension and cable- stayed bridges	 Concerning suspension and cable-stayed bridges, the decomposition in systems is similar to prestressed concrete bridges: main structure system; the tendon system, including tensile elements and anchorages; the implementation/monitoring system. Objects composing these systems have been identified in this deliverable.
Implementation strategy	Even though suspension bridges and cable-stayed bridges are different, the struc- tural concepts, cables and accessories used are very similar. We find many similar- ities in the presented enumerations, and it is imperative to treat these two types of bridges as an enveloping category.
Notice	As it was done for common structures in the UC3 MINnD s1 deliverable, it is nec- essary to decline the Excel file provided in the appendix with the attributes and properties necessary to establish the dictionary of data specific to structures pon-

essary to decline the Excel file provided in the appendix with the attributes and properties necessary to establish the dictionary of data specific to structures noncurrent (prestressed, suspension and cable-stayed bridges). This data dictionary must comply with ISO 23386:2020 - Building information modelling and other digital processes used in construction - Methodology to describe, author and maintain properties in interconnected data dictionaries.

As a reminder, this standard establishes the rules for defining properties used in construction and a methodology for authoring and maintaining them, for a confident and seamless digital share among stakeholders following a BIM process.